Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis
نویسندگان
چکیده
Bone destruction is a frequent and clinically serious event in patients with rheumatoid arthritis (RA). Local joint destruction can cause joint instability and often necessitates reconstructive or replacement surgery. Moreover, inflammation-induced systemic bone loss is associated with an increased fracture risk. Bone resorption is a well-controlled process that is dependent on the differentiation of monocytes to bone-resorbing osteoclasts. Infiltrating as well as resident synovial cells, such as T cells, monocytes and synovial fibroblasts, have been identified as sources of osteoclast differentiation signals in RA patients. Pro-inflammatory cytokines are amongst the most important mechanisms driving this process. In particular, macrophage colony-stimulating factor, RANKL, TNF, IL-1 and IL-17 may play dominant roles in the pathogenesis of arthritis-associated bone loss. These cytokines activate different intracellular pathways to initiate osteoclast differentiation. Thus, over the past years several promising targets for the treatment of arthritic bone destruction have been defined.
منابع مشابه
Inhibition of Osteoclastogenesis and Inflammatory Bone Resorption by Targeting BET Proteins and Epigenetic Regulation
Emerging evidence suggests that RANKL-induced changes in chromatin state are important for osteoclastogenesis, but these epigenetic mechanisms are not well understood and have not been therapeutically targeted. In this study, we find that the small molecule I-BET151 that targets bromo and extra-terminal (BET) proteins that 'read' chromatin states by binding to acetylated histones strongly suppr...
متن کاملHDAC2 regulates FoxO1 during RANKL-induced osteoclastogenesis.
The bone-resorbing osteoclast (OC) is essential for bone homeostasis, yet deregulation of OCs contributes to diseases such as osteoporosis, osteopetrosis, and rheumatoid arthritis. Here we show that histone deacetylase 2 (HDAC2) is a key positive regulator during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption. Bone marrow macrophages (BMMs)...
متن کاملTNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J
Tumor necrosis factor (TNF) plays a key role in the pathogenesis of inflammatory bone resorption and associated morbidity in diseases such as rheumatoid arthritis and periodontitis. Mechanisms that regulate the direct osteoclastogenic properties of TNF to limit pathological bone resorption in inflammatory settings are mostly unknown. Here, we show that the transcription factor recombinant recog...
متن کاملTNFa and pathologic bone resorption
Chronic inflammatory bone diseases, such as rheumatoid arthritis, periodontal disease and aseptic periprosthetic osteolysis, are characterized by bone loss around affected joints and teeth caused by increased osteoclastic bone resorption. This resorption is mediated largely by the increased local production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFa). These cytokin...
متن کاملMIP-1δ Activates NFATc1 and Enhances Osteoclastogenesis: Involvement of Both PLCγ2 and NFκB Signaling
Pathological bone resorption is a source of significant morbidity in diseases affecting the skeleton such as rheumatoid arthritis, periodontitis, and cancer metastasis to bone. Evidence indicates that elevated levels of inflammatory mediators such as IL-1, IL-6, and TNF-α play a role in this process by promoting the formation of bone-resorbing osteoclasts. Additionally, current studies have ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2011